Selective Interaction of Colistin with Lipid Model Membranes.
نویسندگان
چکیده
Although colistin's clinical use is limited due to its nephrotoxicity, colistin is considered to be an antibiotic of last resort because it is used to treat patients infected with multidrug-resistant bacteria. In an effort to provide molecular details about colistin's ability to kill Gram-negative (G(-)) but not Gram-positive (G(+)) bacteria, we investigated the biophysics of the interaction between colistin and lipid mixtures mimicking the cytoplasmic membrane of G(+), G(-) bacteria as well as eukaryotic cells. Two different models of the G(-) outer membrane (OM) were assayed: lipid A with two deoxy-manno-octulosonyl sugar residues, and Escherichia coli lipopolysaccharide mixed with dilaurylphosphatidylglycerol. We used circular dichroism and x-ray diffuse scattering at low and wide angle in stacked multilayered samples, and neutron reflectivity of single, tethered bilayers mixed with colistin. We found no differences in secondary structure when colistin was bound to G(-) versus G(+) membrane mimics, ruling out a protein conformational change as the cause of this difference. However, bending modulus KC perturbation was quite irregular for the G(-) inner membrane, where colistin produced a softening of the membranes at an intermediate lipid/peptide molar ratio but stiffening at lower and higher peptide concentrations, whereas in G(+) and eukaryotic mimics there was only a slight softening. Acyl chain order in G(-) was perturbed similarly to KC. In G(+), there was only a slight softening and disordering effect, whereas in OM mimics, there was a slight stiffening and ordering of both membranes with increasing colistin. X-ray and neutron reflectivity structural results reveal colistin partitions deepest to reach the hydrocarbon interior in G(-) membranes, but remains in the headgroup region in G(+), OM, and eukaryotic mimics. It is possible that domain formation is responsible for the erratic response of G(-) inner membranes to colistin and for its deeper penetration, which could increase membrane permeability.
منابع مشابه
Interaction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملNegatively Charged Lipids as a Potential Target for New Amphiphilic Aminoglycoside Antibiotics: A BIOPHYSICAL STUDY.
Bacterial membranes are highly organized, containing specific microdomains that facilitate distinct protein and lipid assemblies. Evidence suggests that cardiolipin molecules segregate into such microdomains, probably conferring a negative curvature to the inner plasma membrane during membrane fission upon cell division. 3',6-Dinonyl neamine is an amphiphilic aminoglycoside derivative active ag...
متن کاملBinding properties of antimicrobial agents to lipid membranes using surface plasmon resonance.
In the present study, we examined the interaction of antimicrobial agents with four model lipid membranes that mimicked mammalian cell membranes and Gram-positive and -negative bacterial membranes and analyzed the binding kinetics using our surface plasmon resonance (SPR) technique. The selective and specific binding characteristics of antimicrobial agents to the lipid membranes were estimated,...
متن کاملSelective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids
This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammonium)hexyl]fluorene-phenylene}bromide (HTMA-PFP) and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, H...
متن کاملInteraction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 114 4 شماره
صفحات -
تاریخ انتشار 2018